Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Many datasets in real life are complex and dynamic, that is, their key densities are varied over the whole key space and their key distributions change over time. It is challenging for an index structure to efficiently support all key operations for data management, in particular, search, insert, and scan, for such dynamic datasets. In this article, we present DyTIS (Dynamic dataset Targeted Index Structure), an index that targets dynamic datasets. DyTIS, although based on the structure of Extendible hashing, leverages the CDF of the key distribution of a dataset, and learns and adjusts its structure as the dataset grows. The key novelty behind DyTIS is to group keys by the natural key order and maintain keys in sorted order in each bucket to support scan operations within a hash index. We also define what we refer to as a dynamic dataset and propose a means to quantify its dynamic characteristics. Our experimental results show that DyTIS provides higher performance than the state-of-the-art learned index for the dynamic datasets considered. We also analyze the effects of the dynamic characteristics of datasets, including sequential datasets, as well as the effect of multiple threads on the performance of the indexes.more » « lessFree, publicly-accessible full text available May 31, 2026
-
Free, publicly-accessible full text available March 31, 2026
-
Free, publicly-accessible full text available February 25, 2026
-
Free, publicly-accessible full text available March 30, 2026
-
Free, publicly-accessible full text available March 30, 2026
-
This paper presents iDO, a compiler-directed approach to failure atomicity with nonvolatile memory. Unlike most prior work, which instruments each store of persistent data for redo or undo logging, the iDO compiler identifies idempotent instruction sequences, whose re-execution is guaranteed to be side-effect-free, thereby eliminating the need to log every persistent store. Using an extension of prior work on JUSTDO logging, the compiler then arranges, during recovery from failure, to back up each thread to the beginning of the current idempotent region and re-execute to the end of the current failure-atomic section. This extension transforms JUSTDO logging from a technique of value only on hypothetical future machines with nonvolatile caches into a technique that also significantly outperforms state-of-the art lock-based persistence mechanisms on current hardware during normal execution, while preserving very fast recovery times.more » « less
An official website of the United States government

Full Text Available